
NASA TECHNICAL NOTE --__pN A S A  TN 
CI 1 

D-4656, 

- 4  

LOAN COPY: RETURN TO 
AFWL (WLIL-2) 

KIRTLAND AFB, *N-MEX: 

RADIATION AND COUPLING 
BETWEEN TWO COLLINEAR 
OPEN ENDED WAVEGUIDES 

by Robert J. MaiZZozlx 
EZectronics Research Center 
Cdmbridge, Mass. 

N A T I O N A L  A E R O N A U T I C S  A N D  SPACE A D M I N I S T R A T I O N  W A S H I N G T O N ,  D .  C. JULY 1968 



TECH LIBRARY KAFB, NM 

llllllllllllllllllllllIlllllllllIll111111llIl 


RADIATION AND COUPLING BETWEEN TWO COLLINEAR 

OPEN ENDED WAVEGUIDES 

By Robert J. Mailloux 

Electronics Research Center 
Cambridge, Mass .  

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
_ .  _ _  

For sale by the Clearinghouse for Federal Scientific and Technical Information 
Springfield, Virginia 22151 - CFSTl price $3.00 



R A D I A T I O N  AND COUPLING BETWEEN TPJO COLLINEAR 

OPEN ENDED WAVEGUIDES 

By Robert J. Mai l loux  
E l e c t r o n i c s  Research  Cen te r  

SUMMARY 

T h i s  r epor t  describes a n  e x p e r i m e n t a l  and t h e o r e t i c a l  

s t u d y  of c o l l i n e a r  coupled  waveguides r a d i a t i n g  th rough  a 

common p e r f e c t l y  conduc t ing  ground p l a n e .  The problem i s  

fo rmula t ed  a s  a s e t  o f  s i m u l t a n e o u s  i n t e g r a l  e q u a t i o n s  and 

s o l v e d  approximate ly  by expanding t h e  a p e r t u r e  f i e l d  i n  a 

F o u r i e r  series.  

The spec ia l  case o f  a s i n g l e  i so l a t ed  waveguide i s  treated 

f i r s t ,  and t h e  r e s u l t s  a re  compared w i t h  expe r imen t  as w e l l  as 

w i t h  t h e  approximate r e s u l t s  of Lewin. A t t e n t i o n  i s  g i v e n  t o  

t h e  edge  s i n g u l a r i t i e s .  

The m o r e  g e n e r a l  case of t w o  c o l l i n e a r  coupled  waveguide 

s l o t s  i s  s o l v e d  by t h e  s a m e  numer i ca l  method u s i n g  t h e  

symmet r i ca l  p r o p e r t i e s  of t h e  geometry.  Phase  and a m p l i t u d e  

of t h e  mutual  c o u p l i n g  are  e v a l u a t e d  and compared w i t h  

exper iment .  Agreement i s  e x c e l l e n t .  

Cons ide rab le  a t t e n t i o n  i s  g i v e n  t o  comparing more s i m p l e  

approx ima t ions  w i t h  t h i s  r e s u l t ,  and on  several  o c c a s i o n s  it 

i s  p o i n t e d  o u t  how t h e s e  can  b e  used and what error t h e  addi­

t i o n a l  approximat ions  i n t r o d u c e .  



I. INTRODUCTION 


The radiating waveguide is a fundamental electromagnetic 


structure, and one about which a great deal is known. With 


the realization of large scale microwave arrays, the subject 


of waveguide radiation and mutual coupling has aroused 


renewed interest. Since most of the recent theoretical 


efforts have been concerned with infinite arrays1f2r3 and 


since these results are not readily applicable to a considera­


tion of small arrays, or edge effects in large arrays, there 


is a need to study this problem from the point of view of 


individually coupled elements. This approach has been found 


most useful in the case of dipole arrays because the results 


can be readily compared with experiment and because the 


analysis may be extended quite naturally to consider the 


edge behavior of small or large arrays and can be used for 


infinite arrays as well. 


The present work is concerned with the study of two open 


ended waveguides which radiate through a common perfectly 


conducting ground plane. The waveguides are arranged 


collinearly as shown in Figure 1, and the structure has been 


analyzed by expanding the solution in a truncated set of wave­


guide modes as an approximation to the integral equation 


solution. This method was chosen in preference to the compu­


tationally simpler variational solutions in order that bounds 
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FIGURE I COUPLED WAVEGUIDE 

GEOMETRY 
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on t h e  accu racy  of t h e  t h e o r y  cou ld  be e s t a b l i s h e d  by 

v a r y i n g  t h e  number of t e r m s  u sed  i n  t h e  s o l u t i o n .  The t h e o r e t i ­

cal  r e s u l t s  have been  correlated w i t h  e x p e r i m e n t a l  d a t a  i n  

o r d e r  to j u s t i f y  the basic as sumpt ions  of t h e  a n a l y s i s .  

Though many a u t h o r s  have c o n s i d e r e d  t h e  problems of  wave­

gu ide  r a d i a t i o n  and mutua l  coup l ing ,  t h e r e  are s t i l l  a g r e a t  

many q u e s t i o n s  which have y e t  t o  be answered conce rn ing  these 

s u b j e c t s .  The fo l lowing  d i s c u s s i o n  i s  i n t e n d e d  t o  p o i n t  o u t  

some of  t h e  gaps  i n  p r e s e n t  t h e o r e t i c a l  knowledge. 

Much of  the earlier work i n  t h i s  area w a s  concerned  w i t h  

computing t h e  f i e l d  p a t t e r n s  of s i n g l e  waveguides  w i t h  assumed 

a p e r t u r e  d i s t r i b u t i o n s .  The n e x t  s u b j e c t  which attracted 

g e n e r a l  i n t e r e s t ,  t h e  i n p u t  admi t t ance  of waveguide radiators ,  

has t r a d i t i o n a l l y  been  s t u d i e d  4 , 5  u s i n g  v a r i a t i o n a l  f o r m u l a s  

w i t h  t h e  lowest order mode as an  a p e r t u r e  d i s t r i b u t i o n .  

These f o r m u l a t i o n s  have been q u i t e  s u c c e s s f u l  and g i v e  

r easonab ly  good approx ima t ions  t o  b o t h  t h e  conductance  and 

suscep tance .  As mentioned ear l ier ,  t h e y  canno t  e a s i l y  be 

made t o  y i e l d  i n c r e a s i n g l y  more a c c u r a t e  s o l u t i o n s .  O t h e r  

s t a t i o n a r y  f o r m u l a t i o n s 6 f 7 * 8 , 9  have been s t u d i e d  f o r  cases 

i n v o l v i n g  waveguides  r a d i a t i n g  i n t o  complex media. These 

f o r m u l a t i o n s  are based upon t h e  u s e  of  F o u r i e r  i n t e g r a l  

t echn iques  and u s e  the dominant mode f i e l d  as t h e  a p e r t u r e  f i e l d  

approximat ion .  

Galejsl '  w a s  a p p a r e n t l y  t h e  f i r s t  t o  mention t h a t  t h e  

electric f i e l d  d i s t r i b u t i o n  i n  t h e  waveguide E-plane w a s  n o t  

4 



uniform. He correctly observed that the electric field 


normal to the waveguide edges should have a singularity of the 


same order as the static field singularity (r-’I3) at a 90° 


edge. His solution, which was formulated by considering the 


junction between two waveguides as the size of one was made 


to approach infinity, assumed a trial field which exhibited 


this singularity. He found differences in admittance of 


about 5% when comparing this field approximation with the 


uniform field approximation. 


In contrast to the single waveguide radiation problem, 

relatively little work has been done to describe the coupling 

of two waveguides. It appears that the first study of this 

sort was performed by G. W. Wheeler’’ who assumed the coupled 

radiators were in the far field of one another. By comparing 

theory and experiment, Wheeler was able to show that a single 

mode solution was quite adequate for the waveguides which he 

considered when coupled under this far field condition. In 

1956 Levis’’ derived general equations for a variational 

formulation to obtain the coupling between a number of 

generally cylindrical waveguides radiating through a common 

ground plane. He applied the method to a set of coupled 

annular slots. GaleJs13 applied a stationary formulation due 

to Richmondll to solve the problem of two parallel slots in 

a ground plane, with both slots backed by waveguides. He 

also considered the limit in which the slots were the same 

size as the waveguides. His method yielded usable and 
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convenient formulas; it includes the implicit assumption 


that the tangential magnetic field at the coupled waveguide 


aperture is the same as the magnetic field which would be 


present on the ground plane if the coupled aperture were not 


present. In this manner Galejs avoided the problem of 


solving an integral equation. 


The most recent work in this area is described in a 


report by Lyonl’ et.al., and concerns the power coupling 


between various radiating structures including two open ended 


waveguides in a common ground plane, with arbitrary orienta­


tion and spacing. This experimental and theoretical study 


resulted in much useful data and some very convenient approxi­


mate formulas were based upon a single mode approximation to 


the coupling and also included the assumption, equivalent to 


that implicit in the work of Galejs, that the waveguide-backed 


ground plane slot has a total magnetic field equal to the 


incident magnetic field. This assumption again eliminated the 


need to solve an integral equation to determine the coupling. 


The recent work on infinite arrays has shown an increased 


awareness of the importance of higher order modes in scanned 


array situations. 
 Galindo and Wul,* have studied a limited 


but important class of infinite arrays for which the boundary 


value problems could be rigorously solved in terms of scalar 


functions. 
 Farrell and Kuhn3 have used two sets of LSE modes 


to show the existence of a deep null in the array power 


pattern of a triangular grid array as the array was scanned 




only a few degress off broadside in the M-plane. This null 


had been detected experimentally at an earlier date, but was 


not revealed by theoretical results based upon a single mode 


approximation. The authors also mention an unpublished 


study in which the excitation of cross polarized modes is 


studied as the array is scanned in the E-plane. This appears 


to be the first mention of this phenomenon. 


There are several other mathematical techniques which 


have been found useful for related problems but do not seem 


to have been used for rectangular waveguides. The geometrical 


theory of diffraction has been applied to study the radiation 


of hornsl8,l9 and the mutual coupling18 of parallel plate 


waveguides. The Weiner-Hopf procedure19 has been used to 


study radiation of circular waveguides. 


This brief survey emphasizes the fact that there are 

many areas which should be studied further in order to 

achieve a better understanding of this basic problem. The 

present work appears to be the first example of a mutual 

coupling study (excluding the t w o  infinite array studies) 

in which an attempt has been made to solve the integral 

equations which govern the coupling of two waveguides. It 

also appears to be the first example in which more than a 

single mode is used to describe the coupling, and in addition 

it presents the only experimental data currently available 

showing both the amplitude and phase of the signal coupled 

between two collinear open ended waveguides. Though this 
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study is intended as an aid in evaluating simpler and more 


approximate analyses, it cannot be used to estimate the cross 


polarized field components excited at the array face. These 


components are not large for the collinear coupled slot case 


discussed in this report and the analysis presented here has 


been found to be an excellent approximation for all cases 


tested experimentally. 


11. FORMULATION OF THE BASIC PROBLEM 


The basic geometry for this study is shown in Figure 1. 

Two rectangular open-ended waveguides are mounted flush with 

an infinite, perfectly-conducting ground plane. The free 

space field in the half space bounded by the perfectly-

conducting plane (with apertures) can be written in the conven­

tional way in terms of the tangential aperture field as: 

(for z -> 0) 

,. -
B(r) = j2 WLIE z J -r o  (r,r') (z x E)d S; 

p=l,2 sP 


E(r) = 2 c J G(r,T') x ( i  x E)d S '
Pp=l,2 sP 
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An exp(+jwt) time dependence is assumed and has been 

suppressed. Vectors are denoted by a bar above the expression 

and dyadics by a bar below. U- is the unity dyadic and -r0 is 

the conventional free space dyadic Green's function. An 

expression which is entirely equivalent to (11, but which 

helps to explain the major approximation of the analysis to 

follow, is obtained by defining the magnetic hertzian poten­

tial 

i 

The corresponding fields are written 


E( F )  w v  

The above equations define the fields in free space bounded 


by the conducting plane with apertures. 


The field in each of the rectangular waveguides may be 

written in a number of ways, but for the purposes of this 

development it is convenient to expand the field in terms of 

the magnetic hertzian potential as done for the free space 

region. This is done by defining two scalar hertzian poten­

tials rim and Hmy such that 

( 4 )  
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E x p r e s s i n g  t h e  f i e l d s  i n  t h i s  form i s  c o n v e n i e n t  because  

it leads t o  a v e r y  s i m p l e  and symmet r i ca l  f o r m  for t h e  

i n t e g r a l  e q u a t i o n s ,  and a l so  because  it einphasizes  t h e  fo rma l  

s imi la r i t i es  between t h i s  problem and several well-known 

a p e r t u r e  d i f f r a c t i o n  problems ( 2 0 ' 2 1 ' 2 2 v 2 3 ) .  T h i s  expans ion  

i s  c l e a r l y  v a l i d  f o r  t h e  e x t e r i o r  h a l f  s p a c e ,  and one might  

e x p e c t  i n t u i t i v e l y  t h a t  it would a l s o  be v a l i d  w i t h i n  each  of 

t h e  waveguides ,  where i t  i s  e q u i v a l e n t  t o  t w o  sets of  LSE 

modes. T h e s e  sets are  n o t  s u f f i c i e n t l y  comple t e  t o  expand 

t h e  s o l u t i o n  of a n  o b s t a c l e  i n  t h e  waveguide,  b u t  it i s  

proven i n  t h e  appendix  t h a t  t h e y  are a d e q u a t e  t o  expand t h e  

waveguide f i e l d s  when t h e  matching  t a k e s  p l a c e  a t  a p l a n e  

p e r p e n d i c u l a r  t o  t h e  waveguide a x i s .  I f  t h e  waveguide ape r ­

t u r e  f i e l d  i s  used  i n  e q u a t i o n  (21 ,  i t  i s  o n l y  n e c e s s a r y  t o  

e q u a t e  t h e  t a n g e n t i a l  magnet ic  f i e l d s  on b o t h  s i d e s  of  each  

a p e r t u r e  i n  o r d e r  t o  o b t a i n  i n t e g r o - d i f f e r e n t i a l  e q u a t i o n s  f o r  

t h e  coupled  f i e l d s .  I n  o r d e r  t o  d i s t i n g u i s h  between t h e  f r e e  

s p a c e  f i e l d s  and t h e  waveguide f i e l d s  t h e  n o t a t i o n  TT'  , n' nx my 
w i l l  be  used  t o  d e s i g n a t e  t h e  f r e e  s p a c e  f i e l d s ,  w h i l e  t h e  

un-primed p o t e n t i a l s  w i l l  be used ( l a t e r  w i t h  s u b s c r i p t s )  t o  

d e s i g n a t e  t h e  f i e l d s  i n  each waveguide.  With t h e s e  d e f i n i t i o n s ,  

t h e  e q u a t i o n s  t h a t  e x p r e s s  t h e  c o n t i n u i t y  of  t h e  magnet ic  

f i e l d s  i n  t h e  a p e r t u r e s  can  be p u t  i n t o  a form s i m i l a r  t o  t h a t  

used i n  t h e  d i f f r a c t i o n  problems mentioned ear l ier .  A t  each 

a p e r t u r e  

10 




(- a2 + -a 2  + ko) (n' - TI ) = O
ax2 aY* my my 

These equations have been solved rigoroi Sl: in on1 a erY 

small number of cases, most of which are mentioned by Bouwkamp o l  . 
The radiating waveguide is not among these. All of the 


published results describe some approximate solution to the 


above set of integro-differential equations. The analysis 


which follows is also based upon a simplification of these 


equations, to the extent that a single hertzian potential 


function will be used to approximate the input admittance of a 


single radiating waveguide and the coupling parameters of two 


collinear radiating waveguides. This assumption is not new; 


it is implicit in the work of Lewin'l) and Edelberg and 


Oliner ( 2 4 )  and it is made explicit by Kieburtz and Ishimaru( 2 3 )  

The study presented here differs from others studies making 


the same basic assumption in that no other major assumptions 


are made. Instead, the reduced integro-differential equations 


are solved by expanding the solution in a truncated infinite 


series of a restricted set of modes, and then inverting the 


matrix equation which results. The convergence of this tech­


nique has been studied quite carefully and the truncation 


errors are estimated whenever the data is quoted. By these 
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means, this theoretical study results in a very accurate 


solution of the approximate model used. Attention is then 


focused upon the comparison of this model with the experimen­


tal results to verify the validity of the model at hand. 


The assumption that the single hertzian potential function 


"mx suffices to expand the field ultimately requires that there 

A 

be no component of electric field in the x direction. Equations 

( 4 )  and (6) reduce to the following: 

At each aperture a solution of these equations is 


( 9 )  " '  mx = 71mx + A cos kox + B sin kox 

This integral equation was first presented by Lewin ( 4 )  

without mention of its approximate nature. The approximation 

can be understood by noting that the factors A and B are 

constants and not functions of the spacial parameter y .  

Copson(21) has pointed out that the constants of integration 

must be determined so that the fields tangential to an edge 

vanish at the edge. This is necessary to assure that all 

fields are square integrable in a three dimensional domain 

around the edge. The constants of integration for this 

problem must therefore be determined so that the tangential 

electric field EY 
vanish at the edges x = -+a/2. This condition 



i s  t h e  b a b i n e t  e q u i v a l e n t  of t h a t  o r d i n a r i l y  encoun te red  i n  

d i p o l e  t h e o r y  (25) which s ta tes  t h a t  t h e  c u r r e n t  must v a n i s h  

a t  b o t h  ends  of t h e  d i p o l e .  However, though t h i s  c o n d i t i o n  

is s a t i s f i e d  by a c o n s t a n t  f o r  t h e  i n f i n i t e l y  t h i n  d i p o l e ,  

t h e  t w o  c o n s t a n t s  a v a i l a b l e  i n  t h i s  s o l u t i o n  are o n l y  c a p a b l e  

of a s s u r i n g  t h a t  t h i s  c o n d i t i o n  i s  s a t i s f i e d  a t  one  p o i n t  a t  

each  edge.  T h e r e f o r e  it is clear  t h a t  t h e  s o l u t i o n  used i n  

t h i s  a n a l y s i s  i s  r i g o r o u s  f o r  s l o t s  whose w i d t h  "b" e q u a l s  

z e r o ,  b u t  t h a t  i t  i s  o n l y  approximate  fo r  t h e  p r e s e n t  case 

w i t h  f i n i t e  s l o t  w i d t h .  The  edge c o n d i t i o n  i s  n o t  v i o l a t e d  

i n  t h i s  s t u d y  however, because  t h e  s o l u t i o n  i s  expanded i n  

t e r m s  of a f i n i t e  number of waveguide modes, each of which  

s a t i s f i e s  t h e  s t a t e d  c o n d i t i o n  a t  x = ta/z. 

111. SOLUTION FOR THE S I N G L E  R A D I A T I N G  WAVEGUIDE 

S u b j e c t  t o  t h i s  approx ima t ion ,  t h e  e l e c t r o m a g n e t i c  f i e l d  

i s  w r i t t e n  below i n  component f o r m .  
a RmX 

(10) E, = 0 B, = ax2 + % nmx 

, anmx
Ey = -JU­

az 

The f i e l d s  i n  each waveguide are  o b t a i n e d  by w r i t i n g  t h e  

t o t a l  p o t e n t i a l  f u n c t i o n  i n  t e r m s  of a n  i n c i d e n t  mode f i e l d  

p l u s  a n  i n f i n i t e  number of  reflected waves. The i n c i d e n t  

component of t h e  h e r t z i a n  p o t e n t i a l  i s  norma l i zed  t o  u n i t y .  

13 




m * I+ 	 C 1 Am, sin mn(x+a/2 cos nn(%) b/2 eYmnZ 
m=l n=O a 

. 

(-)b(12) where ymn = +/[ (@)' + --m-2 --3 --k;a 

The prime symbol above the summation is used to indicate the 

omission of the (m,n) = ( 1 , O )  term from this double summation. 

The y component of electric field is given by (10) and (12) 

and given below at z = 0 

I 

+ C C Amn ymn sin mn(-
x+a/2 

) cos nn(
Y+b/2 

a 

m=l n=O 


This expression is no longer a convergent fourier series 

because the electric field E:Y perpendicular to the top wall 

of the waveguide exhibits the P -1'3 singularity typical of a 

90° edge, where p is the distance from the edge. The 

expression (ll), however, is convergent everywhere in and out­

side of the aperture, and this property is required to assure 

the validity of this solution. Singularities of this same 

order are exhibited by E, at y = +b/2- and by B, at x =ta/2. 
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The basic  e q u a t i o n  ( 9 )  i s  r e - w r i t t e n  below u s i n g  t h e  

g i v e n  h e r t z i a n  p o t e n t i a l  form i n s i d e  o f  t h e  waveguide. 

(14) 


a/2 b/2 e- jk o r
3 1  1 E y ( X " Y ' )  - d x '  d y '  = A c o s  kox + B s i n  kox 
2 n w  -a/2 -b/2 r 

1 0 0+ 	 ( 1 - r )  s i n  a( x+a/2 I + m C Am, s i n  mn(-
x+"/2 

) c o s  n a (
y+b/2 

a m = l  n=o a 

The s o l u t i o n  p r o c e e d s  by u s i n g  t h e  e lec t r ic  f i e l d  from 

(13)  i n  t h e  l e f t  side o f  ( 1 4 1 ,  and s e t t i n g  I3 = 0 because of 

t h e  even symmetry. A f t e r  d e f i n i n g  t h e  i n t e g r a l s :  

one o b t a i n s  t h e  r educed  form of  e q u a t i o n  ( 9 )  a p p l i c a b l e  t o  t h e  

s i n g l e  r a d i a t i n g  waveguide.  
I 

(16) 

= A cos kox + ( 1 - r )  s i n  a( x+a/2)  
a 

+b/2c ' cos n n ( Y )
a + 

m=1,3 n=0,2 Amn s i n  m a (  ~ + ~ / 2 )  b 

The set o f  modes hnis  t r u n c a t e d  a t  f i n i t e  v a l u e s  of  M 

and N (M,,N,), and t h e  c o n s t a n t  A i s  t reated as an  unknown. 
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T h i s  d e t e r m i n e s  a m a t r i x  e q u a t i o n  when t h e  e q u a t i o n  i s  sa t i s ­

f i e d  a t  a number of p o i n t s  w i t h i n  t h e  a p e r t u r e .  The number 

o f  p o i n t s  chosen  is one  g r e a t e r  t h a n  t h e  number of modes 

used  i n  t h e  s o l u t i o n .  T r e a t i n g  t h e  c o n s t a n t  i n  t h i s  manner 

i s  e q u i v a l e n t  t o  a p r o c e d u r e  which i s  commonly used  i n  an tenna  

t h e o r y  (25)  , namely t h a t  o f  d e f i n i n g  a d i f f e r e n c e  p o t e n t i a l  and 

a s s u r i n g  t h a t  i t  i s  z e r o  a t  some p o i n t  on t h e  an tenna .  T h i s  

method i s  a p p l i c a b l e  when t h e  chosen  d i s t r i b u t i o n  f u n c t i o n s  

o f  c u r r e n t  (o r  i n  t h i s  case e l ec t r i c  f i e l d )  are such  t h a t  t h e  

f i e l d s  a u t o m a t i c a l l y  s a t i s f y  t h e  edge  c o n d i t i o n .  One r o w  of  t h e  

m a t r i x  e q u a t i o n  i s  shown below. 

[ - y l ,  I,, ( x , y )  + s i n  n (  x+a/2 ) ]  T-A COS kox a 

MT I N T  

a( 1 7 )  - I [Ymn Iran ( x , y )  + s i n  m n (  
x + V 2 ) cos n n (y+b/2 

IAmnm=1,3 n=0,2 b 

T h i s  e q u a t i o n  w a s  r e p e a t e d  a t  p o i n t s  on a r e c t a n g u l a r  

l a t t i c e  w i t h i n  t h e  a p e r t u r e .  

IV. SOLUTION FOR TWO COUPLED COLLINEAR ANTENNAS 


When t w o  c o l l i n e a r  s l o t s  c o u p l e ,  t h e  coupled  i n t e g r a l  

e q u a t i o n s  can  be reduced  t o  two uncoupled i n t e g r a l  e q u a t i o n s  

by v i r t u e  of t h e  g e o m e t r i c a l  symmetry. The b a s i c  i n t e g r a l  

e q u a t i o n s  a re  w r i t t e n  below. 
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A t  ADerture  $1 

+ B sin k, x1 + Sl(l+rl) sin n(--
x1+a/2 

1 a 

+ c T: +b/m m 1  S 1  knsin mn(xl+a/2 cos n n ( u )
m = l  n=O a b 

A t  ADer ture  # 2  

x2+a/2 
+D sin kOx2 + S 2 ( l + r 2 )  s i n  n (  a 1 

-
w h e r e  r1  = ( x 1 - x i ) 2  + ( y - y ' ) '  r 1 2  = J (x;+D-xl) + (y-y '  ) 

- c ..... - ­

r 2 2  = J (x2-x;) + ( y - y ' ) 2  r 2  = J ( x 2 + ~ - x i )  + ( y - y ' )  

17 




These equations can be uncoupled by considering separate 

symmetric and anti-symmetric excitations S2 = -+SI = +l.- When 

this is done there is complete symmetry or assymmetry about 

the line x1 = d/2. Setting -x2 = +xl = x, C = -+A, D = TI3 and 

B, = -+Am for m odd and % = T h ,  for m even, one can see 

that the resulting equations have the solution Ey2 (-x2,y) ­

5 EYl (xl,y) and that the two equations reduce to a single 

equation in these two limits. It is then a simple matter to 

reconstruct the case of arbitrary excitation by taking the 

appropriate combinations of these two cases. Later the 

solution to the case of parasitic antenna 12 (S2 = 0) will be 

considered. 

Defining 


and using the previous definition (15) of this integral, one 


obtains the following equations for the symmetric and anti-


symmetric problems. 
S S 

[-yl(JI10 A(x,y) + sin n( x+a/2 I ]  r A - A cos kox - D sin kox 
a 

S S 
OD W x+a/2 A 
c-

m=1,2 n=0,2 
[Ymn Imn A(x,y) + sin mn( a )COS nn (+I 

+b/* I%, 

S 


- A (x,y) + sin n (  x+a/2) - y 1 0  5 0 a 
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A s  b e f o r e ,  t h i s  e q u a t i o n  w a s  w r i t t e n  a t  a f i n i t e  number 

of p o i n t s  w i t h i n  t h e  ape r tu re  and a t r u n c a t e d  series of modes 

w a s  used  t o  describe the  f i e l d .  The re  are now t w o  c o n s t a n t s  

p e r  e q u a t i o n ,  and t h e s e  are de te rmined  as b e f o r e  by r e q u i r i n g  

t h e  i n t e g r a l  e q u a t i o n  t o  be va l id  a t  t w o  ex t r a  p o i n t s  i n  t h e  

a p e r t u r e .  

I n  order t o  c o n s t r u c t  t h e  s o l u t i o n  f o r  t h e  case when 

an tenna  81 i s  e x c i t e d  and a n t e n n a  # 2  is  k e p t  p a r a s i t i c  and 

t e r m i n a t e d  i n  a matched load, i t  is s imply  n e c e s s a r y  t o  supe r ­

impose the symmetr ic  and a n t i s y m m e t r i c  s o l u t i o n s  and t o  

d i v i d e  by t w o  i n  order to norma l i ze  t o  t h e  s o u r c e  a m p l i t u d e s .  

Fol lowing  t h e  u s u a l  p r o c e d u r e s  f o r  s u c h  problems and u s i n g  

t h e  s u b s c r i p t  p t o  d e n o t e  t h i s  case, one  o b t a i n s  t h e  

c o e f f i c i e n t s  below: 

( 2 2 )  s , ,  = s , ,  = + ( r S  + r A )  

( 2 4 )  

V. THEORETICAL AND EXPERIMENTAL RESULTS 

The convergence  of t h e  m a t r i x  s o l u t i o n  t o  e q u a t i o n  ( 2 1 )  

h a s  been s t u d i e d  i n  d e t a i l  i n  order t o  d e t e r m i n e  i t s  accuracy .  

Fur thermore ,  s i n c e  t h i s  e n t i r e  m a t h e m a t i c a l  developinent rests 
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upon t h e  a p p l i c a b i l i t y  o f  t h e  sca la r  approx ima t ion  ( 9 1 ,  an  

e x p e r i m e n t a l  program w a s  unde r t aken  t o  provide r e s u l t s  t o  

compare w i t h  t h e  t h e o r y .  These t w o  s u b j e c t s  are d i s c u s s e d  i n  

d e t a i l  b e l o w .  

The convergence  p r o p e r t i e s  o f  t h e  s o l u t i o n  f o r  s i n g l e  

and coupled  waveguides  are b a s i c a l l y  d i f f e r e n t  and so t h e y  

are d i s c u s s e d  s e p a r a t e l y .  Table  I shows t h e  v a r i a t i o n  i n  

i n p u t  r e f l e c t i o n  c o e f f i c i e n t  f o r  t h e  s i n g l e  r a d i a t i n g  wave­

g u i d e  as v a r i o u s  sets o f  modes are chosen  t o  r e p r e s e n t  t h e  

f i e l d  d i s t r i b u t i o n .  A l l  a c c u r a c i e s  are r e l a t ive  t o  t h e  

h i g h e s t  order s o l u t i o n  ( C a s e  6 ) .  The s i n g l e  mode approxima­

t i o n  y i e l d s  a n  imag ina ry  p a r t  which i s  i n  error by a b o u t  

twenty p e r c e n t  and a r ea l  p a r t  (much smaller  t h a n  t h e  

imaginary  p a r t )  which h a s  t h e  wrong s i g n .  A s o l u t i o n  w i t h  

f o u r  modes ( C a s e  3 )  b u t  i n c l u d i n g  t h e  1 2  and 1 4  modes t o  a i d  

i n  approximat ing  t h e  E-plane d i s t r i b u t i o n  i s  among t h e  more 

a c c u r a t e  s o l u t i o n s  shown. T h i s  h i g h  a c c u r a c y  i s  c o i n c i d e n t a l  

and w a s  n o t  g e n e r a l l y  r e p e a t e d ,  b u t  t h i s  s o l u t i o n  w a s  a lways 

w i t h i n  a b o u t  t e n  p e r c e n t  of t h e  h i g h e s t  order s o l u t i o n  f o r  

a l l  cases examined, and so w a s  l a t e r  used  t o  form t h e  b a s i s  

o f  t h e  coupled  waveguide s t u d y  ( a f t e r  t h e  a d d i t i o n  of a n o t h e r  

mode having  a n t i - s y m m e t r i c a l  x-dependence) .  Another  f o u r  

node s o l u t i o n  ( C a s e  2 )  w i t h  one less mode t o  d e s c r i b e  t h e  L­

p l a n e  d i s t r i b u t i o n  was less accura te  t h a n  t h e  r e s u l t s  of 

C a s e  3 .  !tine modes ( C a s e  4) s e r v e  t o  d e t e r m i n e  t h e  imaginary  
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TABLE I 


CASE 


1 


2 


3 


4 


5 


6 


A. SINGLE WAVEGUIDE REFLECTION COEFFICIENT 

a/x = 1.0; b/A = 0.3 

MODES ' REFLECTION COEFFICIENT 

10 


10, 12, 30, 32 


10, 12, 14, 30 


10, 30, 50, 70, 12, 32, 

52, 72, 14, 34, 54, 74 


10, 30, 50, 12, 32, 52, 

14, 34, 54, 16, 36, 56 


rl0 = -0.3928 - j0.32680 

5 0  = 0.10230 - j0.24786 

r10  = 0.07742 - j0.26969 

rl0 = 0.08309 - 10.27193 

5 0  = 0.08319 - j0.27085 

5 0  = 0.07729 - 10.27786 

B. MODE AMPLITUDES FOR CASE 6 


rlo = 0.07729 - 10.27786 

A30 = -0.05521 + j0.00195 

A50 = -0.00638 - j0.00151 

A12 = -0.05538 - j0.08904 

A32 = -0.00762 + j0.00171 

A52 = -0'.00165 + jO.00022 

A14 = -0.01965 - j0.03589 

A34 = -0.00302 + j0.00051 
A54 = -0.00076 - jo.00034 

A16 = -0.00736 - j0.01418 

A36 = -0.00107 j0.00030 

A56 = -0.00021 4- j0.00021 



part of the reflection coefficient to within about two percent 


of the highest order solution considered and the real part to 


about eight percent. A comparison of this solution (Case 5) 


with Case 6 illustrates that the distribution in the 11-plane 


(x-direction) is fairly well approximated by a few terms 


because the three extra modes introduced to more precisely 


approximate the x dependence barely change the value of the 


reflection coefficient. Table IB lists the mode amplitudes 


for another twelve mode solution (Case 6 )  which was chosen to 


provide the highest order approximation to the E-plane distri­


bution, and hence the most accurate solution for the 


reflection coefficient. Inspection of these mode amplitudes 


is a convenient measure of convergence because the integral 


equation (21) is solved at a number of discrete points within 


the aperture ana therefore one can expect an error in the 


reflection coefficient which is approximately the size of the 


inodes truncated. Table IB therefore shows why it is especially 


necessary to include the modes which approximate the E-plane 


field variation (12,14 etc.). 


Fiyure 2 shows the aperture field variation provided by 

this twelve mode solution. The approximation of the singular­

ity at y = +b/2  is evident in this distribution, as is the 

fact that the H-plane distribution is fairly accurately 

represented by a single mode. 
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DlSTRIBUTlON FOR RAD1AT1NG WAVEGUIDE 
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F i g u r e  3 d i s p l a y s  a set  of c u r v e s  of i n p u t  a d m i t t a n c e  of 

a r a d i a t i n g  r e c t a n g u l a r  waveguide.  These c u r v e s  are p r e s e n t e d  

i n  t h e  f o r m  of t h e  w e l l  known r e s u l t s  of Lewin ( 4 )  and a f e w  

p o i n t s  are shown t o  i l l u s t r a t e  t h e  c o r r e l a t i o n  w i t h  Lewin 's  

data. T h i s  c o r r e l a t i o n  i s  v e r y  good e x c e p t  fo r  d e v i a t i o n s  

of a b o u t  t e n  p e r c e n t  i n  t h e  conductance  f o r  t h i c k  s lo t s ,  and 

of a b o u t  t h i r t e e n  p e r c e n t  i n  t h e  s u s c e p t a n c e  for  v e r y  t h i n  

s l o t s .  There i s  no e x p e r i m e n t a l  e v i d e n c e  t o  compare w i t h  

t h e s e  t w o  t h e o r e t i c a l  r e s u l t s ,  b u t  s i n c e  t h e y  are b o t h  der ived 

u s i n g  t h e  same scalar approx ima t ion  ( 9 )  and s i n c e  t h e  p r e s e n t  

a n a l y s i s  i s  a c o n v e r g e n t  s o l u t i o n ,  it is  c l a imed  t h a t  t h e  

data of F i g u r e  3 i s  a more a c c u r a t e  s o l u t i o n  t o  t h e  i n t e g r a l  

e q u a t i o n .  Whether o r  n o t  these c u r v e s  show closer agreement  

w i t h  expe r imen t  w i l l  d e t e r m i n e  t h e  u s e f u l n e s s  of t h e  scalar 

approx ima t ion  i t s e l f .  

Regarding t h e  u s e f u l n e s s  of t h i s  scalar approx ima t ion  f o r  

d e s c r i b i n g  waveguide a d m i t t a n c e ,  F i g u r e  4 compares t h e  

e x p e r i m e n t a l  d a t a  o f  Venema (26'27) w i t h  t h e  r e s u l t s  of  t h i s  

t h e o r y  and t h e  work of Lewin. These r e s u l t s  i n d i c a t e  t h a t  

t h e  s o l u t i o n  i n  t e r m s  o f  t h i s  s i n g l e  se t  of  h e r t z i a n  p o t e n t i a l s  

is  indeed  a v a l i d  approx ima t ion  for  d e s c r i b i n g  waveguide 

admi t t ance .  Venema's d a t a  does a p p e a r  t o  fo l low t h e  r e s u l t s  

of  t h i s  t h e o r y  more c l o s e l y  t h a n  Lewin ' s  t h e o r e t i c a l  r e s u l t s ,  

b u t  f o r  t h e  s i z e  s l o t s  chosen  t h e r e  i s  so l i t t l e  d i f f e r e n c e  

between t h e  t w o  t h a t  no c o n c l u s i o n  c a n  be drawn e x c e p t  t h a t  

t h e y  b o t h  a g r e e  v e r y  c l o s e l y  w i t h  expe r imen t .  . 



It is appropriate to point out that Lewin's stationary 


solution, which uses a single mode, is considerably more 


accurate than the single mode approximation used with this non­


stationary solution. The advantage of the method presented in 


this note is that enough higher order modes can be conveniently 


included to bring about a convergent solution. 


s Oa8-
- = = = = 0.3 

c 
.Z0 0.6 - \ 8 0.2 
3 
TIg 0.4­
0 
 -0.2 

1 I I I I 

- 12 Mode Solution 
0.6 - x Lewin 

0 -\" 0.5 m 
g 0.4­
c 

E 0.3-

CLa3 
g 0.2­
cn 
 -0.1 

I I I I I I 

FIGURE 3 ADMITTANCE OF SINGLE 
RADIATING WAVEGUIDE 
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'The s o l u t i o n  of e q u a t i o n  2 1  f o r  t h e  case of  two c o l l i n e a r  

coupled  waveguides  i n v o l v e s  s o m e  of t h e  s a m e  convergence  

p r o p e r t i e s  as  t h e  s i n g l e  waveguide,  b u t  i t  a l so  o f f e r s  t h e  

p o s s i b i l i t y  o f  r e l a x i n g  t h e  convergence r e q u i r e m e n t s  f o r  t h e  

coupled  pa rame te r s .  The s e l f  a d m i t t a n c e  t e r m s  n e c e s s a r i l y  

behave i n  a v e r y  s i m i l a r  manner t o  t h e  s i n g l e  waveguide,  and 

so a l l  of  t h e  corments  abou t  t r u n c a t i o n  a p p l y  h e r e  as w e l l .  

Tile p r e s e n c e  o f  t h e  second s l o t  i n  t h e  ground p l a n e  ( w i t h  t h e  

second waveguide t e r m i n a t e d  i n  a matched l o a d )  c a u s e s  a s m a l l  

change i n  t h e  i n p u t  r e f l e c t i o n  c o e f f i c i e n t  of t h e  d r i v e n  

an tenna .  F i g u r e  5 shows t h a t  t h e  imaginary  p a r t  of  t h e  r e f l e c ­

t i o n  c o e f f i c i e n t  undergoes  a change of a b o u t  e i g h t  p e r c e n t  

w i t h  s p a c i n g  v a r i a t i o n s ,  w h i l e  the r ea l  p a r t  b e i n g  much 

smal le r ,  changes  by a b o u t  f i f t y  p e r c e n t .  The e f f e c t  of t h i s  

c o u p l i n g  is  no l o n g e r  v i s i b l e  when t h e  c e n t e r  t o  c e n t e r  d i s ­

t a n c e  exceeds  a b o u t  1 . 2 A .  When t h e  s p a c i n g  d/A exceeds  f i v e ,  

t n e  s u b t r a c t i o n  i n d i c a t e d  i n  e q u a t i o n  ( 2 3 )  b e g i n s  t o  i n t r o ­

duce numer i ca l  i n a c c u r a c i e s ,  b u t  f o r  t h e  r a n g e  of  s p a c i n g s  

used th roughou t  t h i s  r e p o r t  no a d d i t i o n a l  approx ima t ion  i s  

i n t r o d u c e d  by t h i s  symmetr ic -an t i symmetr ic  f o r m u l a t i o n .  

A m o r e  f a m i l i a r  p r o p e r t y  of  c l o s e l y  spaced  r a d i a t i n g  slots 

is  t h e  d i r e c t  c o u p l i n g  between t h e  r a d i a t i n g  s i g n a l  and t h e  

p a r a s i t i c  a n t e n n a .  Table  I I A  shows t h a t  f o r  t h e  case c o n s i d e r e d  

t h i s  pa rame te r  i s  r e l a t i v e l y  i n s e n s i t i v e  t o  t h e  approx ima t ion  

used i n  computing t h e  a p e r t u r e  f i e l d .  

27 




0.I5 

0.10 

0.05 


1 I--- L.- - -- 1­
0.5 1.0 I.5 2.o 2.5 3.0 

FIGURE 5 REFLECTION COEFFICIENT OF DRiVEN 
ANTENNA WITH PARASITIC ANTENNA MATCHED 

28 




- 

- 

- 

TABLE I1 


A. COUPLING COEFFICIENT FOR COLLINEAR COUPLED WAVEGUIDES 


a = 2.286 cm d = 2.921 

b = 1.016 cm f requency  = 10.0 G H z  

CASE MODES COUPLING COEFFICIENT Si2 


1 10 S12 = 0.01669 + j0.00754 

2 10, 20, 30, 40, 12, 14 s12 - 0.01819 + j0.01124 
3 10, 20, 30, 12, 14 S12 = 0.01786 + j0.01120 

4 	 10, 20, 30, 12, 22, 32, s12 - 0.01874 + jO.01047
14, 24, 34 

B. MODE AMPLITUDES FOR CASE 4 

Sll = 0.05595 - 10.22203 Si2 = 0.01874 + j0.01047 

A20 = 0.00233 - jO.00210 B20 = -0.00294 - jO.03949
P P
~ 

A30 = -0.02432 - jO.00741 B30 - -0.00344 + jO.00266
P P 
A12 = -0.05513 - jO.09512 B12 = 0.00211 - jO.00130
P P 

A22 = 0.00030 - jO.00033 B62= -0.00085 -jO.O0569
P 
A32 = -0.00652 - jO.00053 B32 -- -0.00092 + jO.00095
P P 

A14 = -0.01430 - jO.02800 B14 = 0.00058 - jO.00041 
P P 

A24 = 0.00004 - jO.00010 B24 = -0.00025 +jO.O0161
P P

"a4 = -0.00184 - jO.00009 �334 = -0.00026 - jO.00027 
P 
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Table IIB shows the coupling coefficients for Case 4 with one 

antenna driven and the other terminated in a matched load. 

This data is revealing because it demonstrates that the 

error involved in estimating S11 due to approximating the 

aperture field singularity is likely to be significantly 

larger than that involved in evaluating ,521 for the same field 

approximation. (Notice that the ratio of lAl2l to I S 1 1 1  is 

much larger than the ratio of IB121 to IS121). This is 


because the entire field exhibits this singularity, not merely 


the reflected wave. Table IIB does show that the ratio 


iA12i/ll+S11( is indeed about the same (0.1) as the ratio 

IB12 1 / 1512 I =  (0.115) 
These comments relate to the convergence of the chosen 


approximate solution, but reveal nothing about the correspon­


dence of this analysis to the physical problem of collinear 


slot coupling. It remains to show that the solution based 

upon t h i s  approximate scalar model has relevence to the 

problem studied. 

An experiment has been conducted to test the validity of 

the analysis for the collinearly coupled waveguide case. 

Since the coupled signal was so small compared to the trans­

mitted signal, none of the conventional techniques for 

measuring the phase of the coupled signal sufficed. To solve 

this problem a new technique ( 2 8 )  was devised which made it 

possible to measure the phase to within + 4 O ,  even when the-

coupled signal amplitude was - 4 0  db relative to the transmitted 
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signal. Figure 6 shows that this data compares very closely 

with two theoretical solutions. The five and nine mode 

theoretical solutions yield nearly the same coupled power, 

but the difference in phase between these two approximations 

can be as much as 15O. This discrepancy is caused by the 

omission of the higher order modes (22) and (24) in the 

five mode solution. These modes possess odd symmetry about 

the center of each waveguide and become very large at the 

high frequencies where the solutions differ substantially. 

The amplitude of B22P 
is about one third ISl2] at 10.0 GHz, 

but it is about equal to IS121 at 12.5 G H z .  

Since the five mode solution does yield reasonably 

accurate results and requires much less computation time, it 

has been used in Figures 7a and 7b. These figures show the 

amplitude and phase of the coupled signal for waveguides with 

the dimensional ratios a/b = 2.0 and 2.5 and for waveguide 

widths up to a/h = 0.99. The sets of curves with different 

a/b are essentially parallel and sufficiently close together 

to allow interpolation between the. Therefore, the curves 

provided cover the range of almost all commercially available 

wave guides. 

Several important points are noted when these results 


are considered in detail. The first relates to the work of 


Lyon et.al. in which it is observed that the coupling 


amplitude lS121 varies very nearly like as the distance 


d between dots is varied, and that this is approximately 
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true even for very close spacing. Unfortunately, this is 


only true in a qualitative way and the coupling does not 


follow this law closely enough to allow its use quantitatively. 


The complex coupling coefficients S12 does vary like 


[exp(-jkod)]/d2 for the collinear case when the spacing is 


sufficiently large, but Figure 7a shows a pronounced curvature 


of the amplitude plot, especially for the larger slots 


considered, and so it is obvious that the asymptotic behavior 


of ISl2/ does not begin to dominate unit1 ‘/A exceeds 2.0 or 

2.5. The convergence of the curves in Figure 7b shows that 


the phase relationship is even less predictable and, though 


this is not shown in the Figure, the asymptotic type of 


variation in phase does not dominate until d/x exceeds about 


5. This same phase nonlinearity is exhibited by the more 


accurate data of Figure 6b, and so is clearly not caused by 


the approximations involved in the computations for 7b. 


VI. CONCLUSION AND COMMENTS ABOUT ARRAY THEORY 

This study has shown that a set of fields derivable from 


a single component of the hertzian magnetic potential 


function can provide an extremely accurate solution to the 


boundary value problem for a single waveguide radiating 


through a perfectly conducting ground plane or for two 


collinear radiating slots. The solution is rigorous for 


idealized slots of zero thickness, and is a good approxima­


tion even when the slot is the size of a standard commercial 


waveguide. 
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This basic formulation could be used to describe the 


mutual coupling between elements of an array, especially if 


the waveguide height is less than one half wavelength, but 


it can yield no information about the cross-coupled fields 


that are excited at the array face. 


The convergence properties of the solution have been 


emphasized, and no attempt has been made to simplify the 


numerical solution. An extensive experimental program was 


undertaken in an attempt to measure the amplitude and phase 


of the coupling as accurately as possible so that these could 


be compared with the theoretical results. The agreement 


between theory and experiment is excellent. 


In addition to the detailed study of the problem at 


hand, this work has led to certain qualitative conclusions 


which have application to the development of an approximate 


array theory for radiating waveguides. These conclusions 


concern the errors which arise using various sorts of 


approximations, which errors seem to fall naturally into two 


categories: those which have to do with specific approxima­


tions to the aperture fields or the type of solution used 


(ie. a variational theory or the truncated series approxima­


tion used here), and those fixed by the physical process of 


coupling independent of the mechanics of solution. Errors of 


the first type have been discussed in sufficient detail in 


Section V, and some hints have also been given in that section 
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relative to simplifying the theory. Concerning the physical 


processes which must be accounted for by any theory, the 


following conclusions now appear evident.
-

a) If the waveguide dimensions are such that a cross-


polarized TEIO mode (ie. one with its electric field in 


the x-direction) can propagate, then the array theory 


must allow for coupling between the two senses of 


polarization. 


b) 	 This analysis has shown that coupling between collinear 


slots is so small that the reflection coefficient at 


one slot, with the waveguide of the second slot termina­


ted in a matched load, is very nearly the same as for 


the isolated slot. This is not true for closely spaced 


parallel slots because they couple much more strongly, 


and so it will be necessary in general to account for 


the array geometry in the development of the slot self 


admittance. 


c) The asymptotic approximation S12 = c[exp(-jkod) ]/d2 

provides convenient insight into the mechanism of 

coupling, but it does not provide accurate amplitude and 
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phase information i f  the spacing between antennas is 

less than f i v e  wavelengths. An accurate waveguide 

array theory must therefore be a near f i e l d  theory. 
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APPENDIX 


Expansion of the Waveguide Fields in terms of two 


Magnetic Hertzian Potentials. 


The complete field in a rectangular waveguide can be 


expanded rigorously in terms of one component of both the 


electric and magnetic hertzian potentials when these compo­


nents are both taken along the same axis. The most common 

A 

choice of axis is the direction of propagation (z) but it is 

sometimes convenient to choose these vectors along either 

the & or the 5 axis. When the fields are to be matched at a 

plane boundary at the end of a waveguide, the fields can be 

expanded in terms of two magnetic hertzian potentials. To 

show this, it is convenient to choose the magnetic and 
A 1

electric hertzian potentials xnm and xnex as the basis for 

a rigorous expansion of the waveguide fields for the general 

waveguide discontinuity problem. The proof will then proceed 

by showing that a different set of two magnetic hertzian 

potential functions i n m  and $"my can be made to satisfy the 

same boundary conditions as the original set. 

An exp[+jwt] time dependence has been suppressed. The 


general electromagnetic field is written below as derived 


from magnetic and electric hertzian potentials. 
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As p o i n t e d  o u t  earlier, t h e  g e n e r a l  f i e l d  i n s i d e  of a 
L 

r e c t a n g u l a r  waveguide can  be  w r i t t e n  i n  t e r m s  of xnmx and 
L 

X T  as: e x  

The a l t e r n a t e  se t  of magnet ic  p o t e n t i a l s  i s  g iven  below. 

T h e  prime symbol i s  used t o  d e s i g n a t e  t h a t  t h e  magnet ic  

p o t e n t i a l  n' i n  t h i s  expans ion  need n o t  be t h e  same as  'rmx mx 
i n  the  expans ion  of e q u a t i o n s  (A3) and (A4). 

The electric f i e l d s  t a n g e n t i a l  t o  t h e  a p e r t u r e  p l a n e  are 

both equa ted  t o  t h e  t a n g e n t i a l  a p e r t u r e  f i e l d ,  and t h e r e f o r e  

are equa ted  t o  each other. I n  component form, t h e  t w o  

r e s u l t i n g  e q u a t i o n s  are: 

and 
a n  

a2nex + k$nex = + j w  3 
ax2 az 
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If the 


potentials, 


equality of 


should also 


as expanded 


field can be expanded in terms of two magnetic 

then the above relations which guarantee the 

the tangential components of E in the aperture, 

guarantee that the tangential components of E 
using either set of functions is also equal at 

the aperture. 
The magnetic fields tangential to the aperture plane are 


equated to the tangential aperture field and hence to each 


other. The resulting equations are: 


If these equalities can be proved to be identically true 

using (A7)  and (A8) then the desired proof will be accomplished. 

This can be shown to be the case for equation (AIO)  by taking 

-a 2  of equation (A8) and by subtracting ju-a of equationaxay az 
(A10) from this. The resulting equation can be written in the 

form below. 

This equation is identically satisfied using (A7). 


Similarly, equation (A91 can be shown to be identically satis­


fied by starting with equation (A8) and using the fact that 


nex satisfies the scalar helmholtz equation to re-write (AS) 


in the form shown below. 


4 3  



Taking +@(v
1 a2  + kz) of this equation and subtracting it 
from -a of equation (A9), simplifying and again using the az 
helmholtz equation one obtains the resulting equation: 

This equality is also identically satisfied by equation 

(A7) and therefore the two expansions are equivalent for the 

problem considered. 
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